Microsoft

BEST PRACTICES
| | secure'(mﬂware
= a] | DEVELOPMENRT - SERIES

-

SDL: A Process for Developing Demonstrably
More Secure Software

Michael Howard and Steve Lipner
Foreword by Jim Allchin

Co-President, Platforms & Services Division, Microsoft Corporation

o \nclud@_.j_

\‘-‘.““’I training ”‘3‘5:
2" Qe SDL doc,, Yy
T o_au pack a8, &
. P et CC';»I._.‘_ ’J{F [«]

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2006 by Michael Howard and Steve Lipner

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Control Number 2006924466
978-07356-2214-2
0-7356-2214-0

Printed and bound in the United States of America.
123456789 QWE 109876

Distributed in Canada by H.B. Fenn and Company Ltd.A CIP catalogue record for this book is available from
the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Active Directory, ActiveX, Excel, Hotmail, Internet Explorer, Microsoft Press, MSDN, MS-DOS,
MSN, Outlook, PivotTable, PowerPoint, Visual Basic, Visual C#, Visual C++, Visual Studio, Win32,
Windows, Windows Live, Windows Server, and Windows Vista. are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Ben Ryan

Project Editor: Devon Musgrave

Technical Editor: Virgil Gligor; Technical Review services provided by
Content Master, a member of CM Group, Ltd

Copy Editors: Bill Bowers & Shannon Leavitt

Indexer: Richard Shrout

Body Part No. X11-74982

Table of Contents

FOreWord.o et XV
Introduction. e XVii
Why Should You Read This BoOk? xviii
Organization of This Book. Xviii
Part |, “The Need for the SDL" e Xviii

Part Il, “The Security Development Lifecycle Process” Xviii

Part Ill, “SDL Reference Material”. i Xviii

The Future Evolution of the SDL Xix
What's on the Companion Disc? Xix
System RequUIremMENtS.ottt XX
Acknowledgments XX
References XXi

Part| The Need for the SDL

1 Enough Is Enough: The Threats Have Changed. 3
Worlds of Security and Privacy Collide 5

Another Factor That Influences Security: Reliability 8

It's Really About Quality 10

Why Major Software Vendors Should Create More Secure Software. 11

A ChallengetoLarge ISVs. 12

Why In-House Software Developers Should Create More Secure Software 12

Why Small Software Developers Should Create More Secure Software 12

SUMIMAIY oottt et e e e e e 13
References 13

2 Current Software Development Method:s Fail

to Produce Secure Software......... it 17
"Given enough eyeballs, all bugs are shallow”. 18
Incentive to Review Code 18
Understanding Security Bugs. i 19

Critical Masso 19

"Many Eyeballs” Misses the Point Altogether 20
Proprietary Software Development Methods 21
CMMI, TSP and PSP . .. 22

vii

viii Table of Contents

Agile Development Methods. 22
CommOonN Criteriaottt e e e e e 22
UMY .« e e e e 23
REfEIENCES. . . o 24
3 A Short History of the SDL at Microsoft.......................... 27
FIrSt S EPS vttt 27
New Threats, New ReSpONSEst 29
Windows 2000 and the Secure Windows Initiative 30
Seeking Scalability: Through Windows XP........ 32
Security Pushes and Final Security Reviews. 33
Formalizing the Security Development Lifecycle 36
A Continuing Challenge 37
REfErENCES. . . 38
4 SDLfor Managemento ittt 41
Commitment for SUCCESSt 41
Commitment at Microsoft 41

Is the SDL Necessary for You? 43
Effective Commitment 45
Managing the SDL. o i 48
RESOUICES . .o 48

Isthe Projecton Track?. . ..o 50
UMY .« e e e e e 51
REfEIENCES. . . o 51

part I The Security Development Lifecycle Process

5 Stage 0: Education and Awarenessc.cveiniinenennn.. 55
A Short History of Security Education at Microsoft 56
Ongoing EduCation 58
Types of Training Delivery 60
Exercises and Labs 61
Tracking Attendance and Compliance 62

Other Compliance Ideas. e 62
Measuring Knowledge 63
Implementing Your Own In-House Training, 63

Creating Education Materials “OnaBudget” 64
Key Success Factors and Metrics 64
UMY .« . ot e e 65

References. . .. 65

Table of Contents ix

6 Stage 1: Project Inception.t 67
Determine Whether the Application Is Covered by SDL 67
Assign the Security AdVISOr. 68

Act as a Point of Contact Between the Development Team

and the Security Team. ... 69

Holding an SDL Kick-Off Meeting for the Development Team............. 70

Holding Design and Threat Model Reviews with the

Development Teamttt 70

Analyzing and Triaging Security-Related and Privacy-Related Bugs 70

Acting as a Security Sounding Board for the Development Team.......... 71

Preparing the Development Team for the Final Security Review 71

Working with the Reactive Security Team 71
Build the Security Leadership Team. 71
Make Sure the Bug-Tracking Process Includes Security and Privacy Bug Fields. 72
Determine the "Bug Bar”. 74
SUMIMAIY o e e e 74
REfEIENCES . . .t 74

7 Stage 2: Define and Follow Design Best Practices 75
Common Secure-Design Principles. ... 76
Attack Surface Analysis and Attack Surface Reduction 78

Step 1: Is This Feature Really That Important?........................... 81
Step 2: Who Needs Access to the Functionality and from Where? 82
Step 3: Reduce Privilege 83
More Attack Surface Elements. 85
SUMIMIAIY o e e 89
Referenceso o 90

8 Stage 3: Product Risk Assessment............. 93

Security Risk ASsessSment. 94
Setup QUESHIONSot 94
Attack Surface QUESLIONS 94
Mobile-Code QUESLIONSottt 95
Security Feature—Related Questions 95
General QUESTIONS i 95
Analyzing the Questionnaire it 96

Privacy Impact Rating 96
Privacy Ranking L. 98
Privacy Ranking 2. o i 98
Privacy Ranking 3. i 98

Pulling It All Together o e 98

SUMIMIAIY o e e e e e 99

RefEreNCES . . .o 99

X

Table of Contents

9 Stage 4: Risk Analysis. i i 101
Threat-Modeling Artifacts 103
Whatto Model. 104
Building the Threat Model e 104

The Threat-Modeling Processt e 105

1. Define Use Scenarios.ooiiiiiee i 105

2. Gather a List of External Dependencies.............. ...t 106

3. Define Security AsSUumptions. 106

4. Create External Security Notes, 107

5. Create One or More DFDs of the Application Being Modeled 110

6. Determine Threat Typesttt 114

7. Identify Threatstothe System. i 116

8. Determine Risk. 121

9. Plan Mitigations. 124

Using a Threat Model to Aid Code Review, 128
Using a Threat Modelto Aid Testing i 129

Key Success Factors and Metricst 129
SUMIMAIY .« o e e 130
REfErENCES. . 130

10 Stage 5: Creating Security Documents, Tools,

and Best Practices for Customers 133
Why Documentation and TooIs? 135
Creating Prescriptive Security Best Practice Documentation 135

Setup Documentation. 136
Mainline Product Use Documentation.............o, 136

Help Documentation. 138
Developer Documentation.t 138
Creating Tools. 139
SUMIMIAIY .« e e e 140
REfEIENCES. . 140
11 Stage 6: Secure Coding Policies. i, 143
Use the Latest Compiler and Supporting Tool Versions 143
Use Defenses Added by the Compiler 144
Buffer Security Check: /GSo 144

Safe Exception Handling: /SAFESEH 144
Compatibility with Data Execution Prevention: /NXCOMPAT 145

Use Source-Code Analysis TOOIS e 145
Source-Code Analysis Tool Traps.t 145
Benefits of Source-Code Analysis Toolsoovii.... 146

Do Not Use Banned Functions. 148

Table of Contents xi

Reduce Potentially Exploitable Coding Constructs or Designs 149

Use a Secure Coding Checklist. 150

SUMIMIAIY o e e e e 150

RETEIENCES . . .t 150

12 Stage 7: Secure Testing Policies.............. i, 153
FUZZ TeStINg . . o o 153

Penetration Testing. it 164

Run-Time Verification 165

Reviewing and Updating Threat Models If Needed 165
Reevaluating the Attack Surface of the Software 166

SUMIMIAIY o e e 166

REfEIENCES . . . 166

13 Stage 8: The SecurityPush i i, 169
Preparing for the Security Push 170

Push Duration.o 171

TrAINING e 171

COdE REVIBWS . . o ottt 172
Executable-File Owners. 174

Threat Model Updates. i e 174

Security Testing . . . oo oo 175
Attack-Surface Scrub 175
Documentation Scrub 176

Are We Done Yet?. . .. 177

SUMIMIAIY oo e e e e 178

REfEIENCES . . . 179

14 Stage 9: The Final Security Review 181
Product Team Coordination i 182

Threat Models ReVIEW 182

Unfixed Security Bugs ReVIEW. 183

Tools-Use Validation. e 184

After the Final Security Review Is Completed 184

Handling EXCeptionso e 184

SUMIMIAIY o e e 185

15 Stage 10: Security Response Planning 187
Why Prepare to Respond?. 187

Your Development Team Will Make Mistakes 187

New Kinds of Vulnerabilities Will Appear.......... ..., 188

Xii Table of Contents

Preparing to Respond 190
Building a Security Response Centercooiiiiiiiiinanaaa. .. 191
Security Response and the Development Team 208
Create Your Response Team.t e 208
Support Your Entire Product o 209
Support All Your CUStOMErS.t 210

Make Your Product Updatable i, 211

Find the Vulnerabilities Before the ResearchersDo..................... 212
SUMMATY .« o e e e 213
REfErENCES. 213
16 Stage 11: ProductRelease. i, 215
REfErENCES. 215
17 Stage 12: Security Response Execution. 217
Following Your Plan. 217
Stay CoOl. .o 217

Take YOUr TimMeo e e 218
Watch for Events That Might Change Your Plans. 219
Follow Your Plan 220
Making [t Up asYou GOt e 220
KnowWhomto Call o 220

Be AbletoBuildanUpdate ... 220

Be AbletoInstallan Update i 221

Know the Priorities When Inventing Your Process...................... 221
Knowing What to SKip 221
SUMIMIAIY e e e e e e 222
REfErENCES . . 222

Part Il SDL Reference Material

18 Integrating SDL with Agile Methods 225
Using SDL Practices with Agile Methods i i i ... 226
Security Education. 226
Project INCeption 226
Establishing and Following Design Best Practices 227
Risk ANalysis 227
Creating Security Documents, Tools, and Best Practices
for CUSTOMEIS. . . oo e 229
Secure Coding and Testing Policieso, 229

Security PUSh ... 231

Final Security Review 232
Product Release 233
Security Response Execution 233
Augmenting Agile Methods with SDL Practices 234
USEr STOTIES .« o vttt ettt e e e e 235

Small Releases and Iterations.......... ... i 236
Moving People Around o 236
SIMPLICItY . 236

Spike SOIULIONSo 236
Refactoring 237
Constant Customer Availability 237
Codingto Standards 237
Codingthe Unit Test First.............. 238

Pair Programmingo e 238
Integrating Often 238
Leaving Optimization Until Last. i 238

When aBug IsFound, aTestIsCreatedot 239
SUMIMIAIY ot e e e e e 239
Referenceso 239
19 SDL Banned FunctionCalls............ i, 241
The Banned APIS. 242
Why the "n” Functions Are Banned i 245
Important Caveat 246
Choosing StrSafe vs. Safe CRT. 246
Using StrSafeo o 246
StrSafe Example 247

Using Safe CRT o 247
Safe CRTExample.o 248

Other Replacements. 248
TOOIS SUPPOIt vt 248
ROl and Cost Impact e e 249
Metrics and GoalS.o 249
Referenceso 249
20 SDL Minimum Cryptographic Standards 251
High-Level Cryptographic Requirements..........o i, 251
Cryptographic Technologies vs. Low-Level Cryptographic Algorithms. 251

Use Cryptographic Libraries. i 252
Cryptographic Agility 252

Default to Secure Cryptographic Algorithms. 253

Xiv Table of Contents

Cryptographic Algorithm Usage. i 253
Symmetric Block Ciphers and Key Lengths 254
Symmetric Stream Ciphers and Key Lengths. 254
Symmetric Algorithm Modes. 255
Asymmetric Algorithms and Key Lengthso ... 255
Hash FUNCLIONS. e 255
Message Authentication Codes.co i 256

Data Storage and Random Number Generation 256
Storing Private Keys and Sensitive Data...............ot 256
Generating Random Numbers and Cryptographic Keys. 257
Generating Random Numbers and Cryptographic Keys from Passwords
or Other Keys . ..o 257

RefereNCes. . . 257

21 SDL-Required Tools and Compiler Options...................... 259

Required TOOIS . ..o o 259
PREfAST. . .\ 259
FXC 0P, o e 263
Application Verifier 265
Minimum Compiler and Build Tool Versions. 267

REfErENCES. . 268

22 Threat Tree Patterns. i, 269

Spoofing an External Entity ora Process oo 271

Tampering with @ Process. 273

TamperingwithaData Flow e 274

TamperingwithaDataStore 276

Repudiation. 278

Information Disclosure of a Processt 280

Information Disclosure of aData Flow. i, 281

Information Disclosure ofaDataStore i, 282

Denial of Service Against a Process 284

Denial of Service AgainstaDataFlow i 285

Denial of Service AgainstaData Store......... i 286

Elevation of Privilege. 287

REfErENCES . 288

INdEX. .ot e e 291
What do you think of this book? Microsoft is interested in hearing your feedback about this publication so we can

continually improve our books and learning resources for you. To participate in a brief

We want to hear from yOU! online survey, please visit: www.microsoft.com/learning/booksurvey/

Presented by:

~
Tecli\R:public

Chapter 18
Integrating SDL with Agile
Methods

In this chapter:

Using SDL Practices with Agile Methods............ 226

Augmenting Agile Methods with SDL Practices........................... 234

Like them or not, Agile methods and processes such as Extreme Programming (XP) and Agile
processes such as Scrum are gaining popularity (Extreme Programming 2006, Schwaber
2004). Microsoft has also adapted its Microsoft Solutions Framework to include Agile methods
(Microsoft 2006).

We’re not going to debate the merits of these rapid-development processes, but groups within
Microsoft, such as those in MSN and Windows Live, have integrated Agile methods into their
development processes to good benefit. What sets the MSN and Windows Live projects apart
from most Microsoft projects is that MSN projects are not huge development efforts such as
Microsoft Windows or Microsoft Office. Complex to a degree, they have an important goal:
rapidly developed small releases. Examples of projects delivered by MSN using Agile methods
include

MSN Messenger 7.5

MSN Tabbed Browsing for Microsoft Internet Explorer
MSN Anti-Phishing add-in

MSN Support tools

Internet Access RADIUS Service

Note that some of these products were built using only Agile methods and others experi-
mented with various ideas from Agile methods.

The rest of this chapter is split in two parts, the first looking at Security Development Life-
cycle (SDL) concepts and applying them to Agile methods, and the second looking at Agile
methods with regard to adding SDL concepts. Please note that the goal of this chapter is not
to cover every aspect of all Agile methods. Rather, it is to choose where it makes sense to
augment the rules and practices of Agile methods with more security discipline and best
practices.

Reproduced from the book The Security Development Lifecycle: A Process for Developing Demonstrably
More Secure Software, Copyright] 2006, Michael Howard and Steve Lipner. Reproduced by permission of
Microsoft Press, a division of Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399. Written
permission from Microsoft Press is required for all other uses.

detwilerb
Placed Image

reynoldsc
Text Box
Presented by:

http://techrepublic.com.com
reynoldsc
Text Box
Reproduced from the book The Security Development Lifecycle: A Process for Developing Demonstrably More Secure Software, Copyrightã 2006, Michael Howard and Steve Lipner. Reproduced by permission of Microsoft Press, a division of Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399. Written permission from Microsoft Press is required for all other uses.

http://www.microsoft.com/MSPress/books/8753.asp
http://www.microsoft.com/MSPress/books/8753.asp

226

Part lll: SDL Reference Material

Using SDL Practices with Agile Methods

In this first section, we’ll look at the core SDL practices and consider how these can be used
with Agile methods.

Security Education

Q

@

Regardless of what software development method you employ, security education is critical.
No development method will create secure software if the people building the software do not
use simple security best practices. We've heard people claim that <insert popular development
method> produces bug-free software. This might be true—and of course, it is true if you know
nothing about security bugs, because you wouldn’t recognize a security bug if you had no idea
what one was.

Hence, you should follow the standard SDL policy and train all engineers about security
issues at least once a year. In the overall cost of software development, the cost of education
(in terms of time and effort) is tiny, and the risk of security errors being introduced is large.

Tip We appreciate that everyone developing software is in a hurry these days, but please do
not skimp on security and privacy education.

Because of the less structured environment fostered by Agile development, the MSN teams
push for more time spent on education and training. As a result, one of the MSN group’s new
requirements is that at least one hour be spent every two weeks on training and education. Of
course, security is not the only possible subject that could be covered, but it is an important
component.

Important We would argue that security education is more critical in the Agile environ-
ment because more decision-making power is placed in the hands of the product owner and
development team.

One could justifiably argue that the XP concept of pair programming would aid with security
education. But if neither member of a pair understands security, chances are that neither will
notice a security bug. Itis our opinion that all engineers should have classroom-style or online
security education. It really is that important.

Project Inception

Contrary to popular belief, Agile methods do require some up-front groundwork. From an
SDL perspective, the team must understand who the security go-to person is. This person is
the security coach.

Chapter 18: Integrating SDL with Agile Methods 227

Note The SDL concept of “security advisor” translates nicely to an Agile “security coach.”

Another part of XP is the notion of moving people around. If you adhere to this principle, con-
sider moving the security coach around so you will force more people to take a security lead-
ership position. However, do not take unnecessary risks in choosing the security person: this
person has to make the best-possible security decisions for the product.

Establishing and Following Design Best Practices

®)

Design, according to the traditional software-engineering definition, does not exist in most
Agile methods. Rather, as the application develops or is iterated, the design is also iterated. Of
course, you could always make serious design mistakes early in the product’s life, but the goal
of Agile development is to understand these mistakes early, in conjunction with customers,
and make incremental changes for the next iteration. Often an iteration, or sprint (in Scrum
parlance), might be only 14 or 30 days long,.

Another aspect of many Agile methods, including Extreme Programming, is simple design. The
software should include only the code that is necessary to achieve the desired results, as com-
municated by the customer. Simple design has a valuable security side effect: if you keep the

design simple, you increase the chance that the design is secure. Complex software is difficult,
if not impossible, to make totally secure. Also, smaller and more modular software is likely to

be architecturally more secure.

The core of the Agile design philosophy is the user story. A user story is a short text that
describes how the system is supposed to solve a problem or support a business process. User
stories should encompass the customer’s security concerns. Developers sign up for stories,
and it’s not unreasonable to expect one or more stories to focus solely on the security of the
system. But a story about security should focus on threats perceived by the customer, which
we will discuss next.

Best Practices For some development projects, procuring an on-site customer might be
impossible. Very large projects, such as development of an operating system or a Web server,
are examples. In cases like these, consider using personas, which you create based on real cus-
tomer data, to help prioritize features and maintain focus on target customers (Kothari 2004).
Above all, personas must be believable! You can also dedicate an employee to play the role of
each of the assigned personas in person during meetings.

Risk Analysis

When building an application using Agile methods, you will probably not have a data flow
diagram (DFD). In some software projects, there is a design sprint, and a deliverable from the
design sprint could be a DFD.

228 Part lll: SDL Reference Material

But at some point, you will know that component A will communicate with component B
using, say, sockets, and that component B uses a database to persist the data over, say, Open
Database Connectivity (ODBC). Figure 18-1 shows an example of this arrangement.

WebServer ApplicationServer (.NET)

Order SOAP DB Interface ODBC over

i Database S
Processing over HTTP TCP/IP atabase Server

(Oracle 10g)

Business
Rules

Figure 18-1 A portion of a story showing interaction among various components.

With this small diagram in hand, you can easily apply the risk analysis process using the
following mapping:

Code portions of the diagram are processes.

Users are external entities.

Any place where data is persisted is a data store.
Interaction between code or data stores is a data flow.

Interaction between users or external entities and code is a data flow.

Now you can apply the STRIDE threat taxonomy versus DFD elements described in Chapter 9,
“Stage 4: Risk Analysis,” and ask the customer questions such as the following;

Does it concern you that an authenticated user or attacker can read any data from the
Sales Order database?

Will you be concerned if a valid user is denied access or degraded in her use of the appli-
cation server?

Does it concern you that anonymous users can read and change the network traffic
between the application server and the database server?

If the answer to any of these questions is yes, that answer becomes part of the story. If not,
make a note in the story that the customer is not concerned.

@ \ Best Practices Translation from threats in the threat model to questions to ask the cus-

tomer is the job of the security coach.

Chapter 18: Integrating SDL with Agile Methods 229

Take a closer look at the question sentences:

» o«

B “Anonymous,
levels.

authenticated user,” and “valid user” are examples of roles or trust

B “Read” is a synonym for information disclosure (Iin STRIDE). “Change” means tamper-
ing (T in STRIDE). Denied or degraded service is an example of denial of service (D in
STRIDE).

m “Sales Order database” and “application server” are example processes you need to
defend from attack. Always remember that a customer’s machine is an asset that always
requires protection.

You can apply this simple analysis method to all parts of the Object Management Group’s
UML (Unified Modeling Language) diagram. In short, rather than thinking of potential secu-
rity issues in an ad hoc manner, this method combines the analytical threat-modeling tech-
nique with rapid Agile development methods.

Creating Security Documents, Tools, and Best Practices
for Customers

Agile methods are often criticized for having very little user-oriented documentation. At the
very least, you should provide important security best practices in online Help files and
within the application’s user interface. Better still, if you are using the risk analysis process
described in Chapter 9, you can use the security notes to help derive customer-facing docu-
mentation. That being said, it all depends on whether this is what the customer wants. So ask
your customers what they want. Chances are that if you have a substantial user base (such as
that of MSN Messenger 7.x), you should simply do the right thing by providing security best-
practice documentation because no customer actively wants users to make security mistakes.

Secure Coding and Testing Policies

Agile methods support the notions of coding practices and requiring constant testing. In the
case of coding practices, you should adopt secure coding best practices defined by SDL, such
as the following:

Requiring coding best practices.

m Not using banned application programming interfaces (APIs). (See Chapter 19, “SDL
Banned Function Calls.”)

m Using only appropriate cryptographic algorithms. (See Chapter 20, “SDL Minimum
Cryptographic Standards.”)

B Using static analysis tools such as those included with Microsoft Visual Studio 2005.
(See Chapter 21, “SDL Required Tools and Compiler Options.”)

230

Part lll: SDL Reference Material

Better yet, don’t just define and use the coding rules; if you use Microsoft Visual Studio 2005
Team System, set up check-in policies and testing policies that enforce your rules (Microsoft
2005a, Microsoft 2005b).

Testing is a little more involved. Extreme Programming mandates that if you find a bug, you
should write a test; this mandate applies to security bugs also. For example, if you find an inte-
ger overflow such as the following in your C/C++ code, you must build a security test that trig-
gers this bug.

void * Renderengine::AllocArbitraryBlob(int qty, int size) {
if (qty && size)
return GlobalAlloc(0,qty * size);
else
return NULL;
}

You must fix the code and rerun the test. The test should not fail. Rerun the test on every new
build of your code. In CppUnit-like pseudocode (Wikipedia 2006, CppUnit 2006), your test
might look like the following code example:

// Instantiate the class under test.
Renderengine *e = new RendertEngine();

// Zero quantity or size is a no-op.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(0,10) == NULL);
CPPUNIT_ASSERT(e->AllocArbitraryBlob(10,0) == NULL);

// An overflow should fail with NULL.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(Ox1fffffff,0x10) == NULL);

// A signed versus unsigned overflow should fail with NULL.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(Ox1fffffff,-1) == NULL);
CPPUNIT_ASSERT(e->AllocArbitraryBlob(-1,0x1fffffff) == NULL);

// This should succeed; NULL means there was an int overflow.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(0Ox1fffff,1) != NULL);

// This should succeed too.

// And we need to verify that the return buffer size is correct.
void *ptr = e->AllocArbitraryBlob(0x200,0x20);
CPPUNIT_ASSERT(0x200%0x20 <= Globalsize(ptr));

GlobalFree(ptr);

Then you would make the code fix:

inline void * RendereEngine::AllocArbitraryBlob(size_t qty, size_t size) {
size_t alloc = qty * size;

if (alloc ==0)
return NULL;

// Function is inlined, so ‘size’ is typically a constant

Chapter 18: Integrating SDL with Agile Methods 231

// and the division is optimized away at compile-time
if (MAX_INT / size <= qty)

return GlobalAlloc(GPTR,alloc);
else

return NULL;

}

When you rerun the tests, they should all succeed with the defensive code in place. You
should build tests like this for all bugs, including security bugs.

Finally, fuzz testing lends itself well to Agile methods. If you have code that parses any input,
you should build fuzz tests for all the entry points. These should be run daily, just like every
other test.

Security Push

Within most Agile methods, there is no concept of specialized coding events such as those
focusing on usability or security. However, a critical tenet of Extreme Programming is refactor-
ing, which concerns itself with improving the internal representation of the code to make it
cleaner, easier to read and maintain, higher quality, and, in our opinion, more secure (Fowler
2005). Secure software is by definition quality software, after all. One could argue there is no
need for security pushes when Agile methods are used, except in one particular case: the secu-
rity push, as defined in the SDL, focuses almost exclusively on legacy code. Code that has not
been touched in three or more years probably has security bugs because

m The security landscape evolves substantially for good and for ill, but mostly for ill.
B Security tools advance quickly for good and for ill.

B People generally get better at finding security bugs, for good and for ill.

If the legacy code handles sensitive or personally identifiable data or is exposed to the Inter-
net, all the legacy code should be reviewed in a series of “refactoring spikes” until all the code
is reanalyzed, new tests are built, and bugs are fixed. More information about refactoring is
provided later in this chapter.

If you use Scrum, you should also consider adding legacy code cleanup work to the product
backlog every couple of sprints. The product backlog is a list of all the desired changes to the
product being developed. Work items are taken from the product backlog and added to the

sprint backlog by the product owner. If this is the first time your product has been subjected
to security rigor, you should make the previous code cleanup work a major component of the
backlog.

The MSN team has a mini-security push prior to a Release Candidate in which there is a group
security code review and a dedicated test cycle for security testing. This amounts to one day
for a two-week sprint or two days for a month-long sprint.

232

Q

Part lll: SDL Reference Material

Tip Some proponents of Agile methods at Microsoft indicate that having a series of one-day
“security days” in the middle of the development schedule is beneficial.

Final Security Review

The Final Security Review (FSR), as discussed in Chapter 14, “Stage 9: The Final Security
Review,” is the point at which you verify the product is ready to ship from a security and pri-
vacy standpoint. Agile methods cannot employ a full-fledged FSR because of time constraints,
but it does not mean you cannot do an FSR! For code developed using Agile methods, we pro-
pose the following minimum set of FSR requirements:

m All developers working on this iteration have attended security training within the last
year.

m Unfixed security-related bugs are in fact appropriate to leave in this release. If the
customer is well defined, the customer should have the final say.

m All customer security stories have been implemented correctly and signed off by the
customer.

All secure-coding best practices have been adhered to.
All code-scanning tools have been used, and appropriate bugs have been fixed.
All security-related tests have been run and bugs fixed.

All parsed data formats have fuzz tests.

If you are using managed code, such as C# or Microsoft Visual Basic .NET, results from
tools like FxCop are evaluated and, if need be, fixed.

Compilers used meet the minimum SDL requirements. (See Chapter 21.)

If you are using Visual Studio, all C/C++ code is compiled with /GS and linked with
/SafeSEH.

It's important that all security-related user stories be evaluated to make sure they are imple-
mented correctly and meet the customer’s needs.

All of the items in this list should be on a Big Visible Chart (BVC), also called an Information
Radiator (Jeffries 2004). An important part of Extreme Programming is communication, and
BVCs are a good way to very openly communicate what is expected of the engineering team.

Finally, because of the highly iterative nature of Agile methods, you can break an FSR into
small “feature FSRs.” In other words, rather than putting the entire software product through
the FSR process every time you iterate, perform smaller FSRs on one or two features every
sprint until the entire product is reviewed. The review order is determined by risk, and the
riskiest features are reviewed first.

Chapter 18: Integrating SDL with Agile Methods 233

Product Release

An important part of the scheduling process when you use Extreme Programming is the
release plan. This plan should include which security-related stories must be delivered to cus-
tomers before you can consider the current iteration complete. When all these stories are com-
plete, the product is ready for release to the customer.

Security Response Execution

The Security Response Execution stage is unique to SDL and is not apparent in Agile meth-
ods. Agile methods support the concept of rapid iterations that have well-defined and cus-
tomer-supported features and the notion that any bugs found in one iteration can be fixed in
the nextiteration. But here is the problem: security bugs are not typical bugs. They might very
well lead to emergencies that can put the customer at risk, which means you need to have a
plan in place to handle potential security bugs at once. The preferred way to treat this situa-
tion is as a spike. You use a spike solution when you are working in a new problem domain or
with a new technology you do not understand. We would argue that newly discovered secu-
rity bugs fit both of these conditions. They are new problems in that the instance of this bug
is new to you and your customer, and it’s something you might not yet understand how to fix
correctly. Another reason to use a spike is time; remember, if a security bug is publicly known,
the chance that the vulnerability could be used to attack your customer increases over time
until the customer applies the fix, mitigation, or workaround. Therefore, we recommend that
the spike have two major components:

1. Aviable workaround as soon as possible.

2. Areal code-level or architecture-level remedy.
As a first step, determining an appropriate workaround might include tasks like these:

B Enabling a firewall rule
B Turning off some functionality

B Employing another security feature

When creating the real remedy, which might be a design or code change, it’s important that
you create a test to detect the defect first. Then make the fix and rerun the test to verify that
the fix works.

Here is where Extreme Programming and SDL might be perceived to diverge. A spike is sup-
posed to be a very discrete event focusing on solving one technical problem, but in the case of a
security defect, the chances are good that the same type of bug exists in more than one place in
the code. Because of the way security researchers find security bugs, they will find the other
bugs—guaranteed! So when you find a security bug, you should form a spike that includes a
security expert, make the appropriate and correct code fix (and the test), and then find the other
defect variants within the same code area. Don't forget to create small tests of all the bugs.

234 Part lll: SDL Reference Material

Once the fix is complete and deemed acceptable, you must issue a fix and provide guidance to
your customers.

Core values of Agile methods include learning from mistakes and being adaptive rather than
predictive. These notions apply to security bugs, too; you must apply a root-cause analysis to
answer the following questions:

Why did this mistake occur?

What do we need to change to make sure this mistake never happens again? The
answers to this might include better testing, more education, and changes to and
enforcement of the best practices.

Can a tool be created to search for the mistake in future code?

Where else could this mistake have occurred?

You should apply your new knowledge to all future iterations to reduce the chance that the
same mistake is made again (and again!).

Augmenting Agile Methods with SDL Practices

In this short section, we’ll look at some of the Agile doctrines and see how they can be aug-
mented with security best practices from SDL. The following list identifies the Agile doctrines
that we’ll look at:

m Planning
1. User stories
2. Release planning
3. Small releases and iterations
4. Moving people around
m Design
1. Simplicity
2. Spike solutions
3. Refactoring
m Coding

1. Constant customer availability
2. Coding to standards

3. Coding the unit test first

4

Pair programming

Chapter 18: Integrating SDL with Agile Methods 235

5. Integrating often
6. Leaving optimization until last

m Testing all bugs

Let’s look at the specific doctrines in detail.

User Stories

User stories should include the customer’s security requirements. As previously noted, such
stories must be based not on intuition but on real-world threats. Use the risk- and threat-mod-
eling method outlined in the “Risk Analysis” section in this chapter to understand these
threats and articulate them to customers.

In his book User Stories Applied: For Agile Software Development, Mike Cohn suggests adding
“Constraints” to user stories (Cohn 2004). A constraint is something that must be obeyed and
is fundamental to the business. For example, from a security perspective, a story might
include directives such as these:

B “The software must not divulge the data in the Orders database to unauthorized users.”

m “All software add-ins must have valid digital signatures in order to run within the
system.”

B “The client must always authenticate the validity of the server.”

For a software product to be complete, all user stories should be complete. By “complete”
We mean

m All code and test code for each story is checked in.
m All unit tests for each story are written and passed.
m All applicable functional tests for each story are identified, written, and passed.

m Product owner has signed off.

And, from an engineering practices perspective, “complete” means the following steps have
been taken:

All appropriate security best practice has been adhered to, or exceptions granted.

The latest compiler versions are used.

|

|

B All code scanning tools have been run over all code.

m All bugs from the code scanning tools are fixed or postponed.
u

There is no use of banned functionality.

236

Small

Part lll: SDL Reference Material

Releases and Iterations

Itis easier to secure a small code delta than a large code delta. It is common to see coding bugs
of all types on the boundary of old and new code; if this boundary is kept small, bugs can be
found relatively easily. The doctrine of small releases is good for security, too. Another benefit
of small iterations is that you can prioritize security defenses. Critical defenses can be added to
the code in the current iteration, and less-important defenses can be added to later iterations
if needed. Small iterations also address the notion of not adding functionality earlier than it’s
needed.

We have learned the hard way that one drawback of introducing a new security defense is that
the chance of also introducing functional regressions is very high. Be forewarned.

Moving People Around

®)

In general, competent security specialists are scarce and hard to hire. Be prepared to wait to
hire the right person. Once you have hired an effective security person, encourage him to
teach security to others in the team. A critical component of security skills is education: have
the guru teach and mentor others in the team.

Note that although moving people around is a good idea, the authors have yet to see any team
doit.

Best Practices Security should be a skill common to all software developers, not confined
solely to just a select group of specialists.

Simplicity

A simple application is more secure than a complex application, period. Complexity is an
enemy of security. Of course, in the real world, this truism is a little more subtle. We can
always write simple software that would never get the job done. In fact, most code today is
complex because business processes are complex and have thorny, but necessary, require-
ments that add complexity to the code, such as responsiveness, timeliness, robustness, trans-
action processing, offline and online capabilities, integration with older systems, and so on.
But at the micro-level, your code can be simple and easy to understand and, hence, to main-
tain. Where possible, strive for simple designs and easy-to-understand code.

Spike Solutions

Invariably, you'll hit security roadblocks, perhaps security bugs or your own uncertainty on

the best way to implement or take advantage of a security feature. A spike solution is a great
method to determine the best way to resolve security dilemmas. Take two developers off the
core project to work on the security solution.

Chapter 18: Integrating SDL with Agile Methods 237

Refactoring

At Microsoft, we often systematically review older code, looking for security bugs; if issues are
found, the code is fixed. In some cases, design issues or erroneous coding patterns are found,
and these patterns are fixed. This concept is very similar to that of refactoring, which is a tech-
nique for restructuring or changing an existing body of code without changing its interface or
external behavior. You must consider security bugs as part of your refactoring process. Exam-
ples of security refactoring include

m Replacing banned APIs with safer APIs; for example, replacing strcpy with StringCchCopy
or strcpy_s. (See Chapter 19.)

B Replacing weak crypto algorithms with more up-to-date and secure versions. (See
Chapter 20.)

m Making cryptographic code more agile by removing hard-coded algorithm names, key
sizes, and other cryptographic-related settings. (See Chapter 20.)

m Replacing integer arithmetic used in memory allocations and array indexing with safer
code.

There are challenges with refactoring for the sake of refactoring—most notably, defects, usually
called regressions, could be entered into the code base (Garrido and Johnson 2002).

Constant Customer Availability

@

The customer is a key contributor (some say the only contributor) to user stories. The cus-
tomer must also provide the security requirements for the stories. You can make sure nothing
is missing from user stories by building threat models for components within the application
and validating that no threats are missing from the customer’s stories. However, to many cus-
tomers, security is an unspoken requirement. You really have to probe customers to learn how
much security they’d like to buy. Customers won’t mention it—they’ll just say “Make it secure!”
(which, of course, is meaningless).

Important It's imperative that you always consider how the software can be misused.

When security issues arise, the customer must be consulted once the threats are thoroughly
understood. At the meeting to review the threats, use a spike to determine the appropriate
remedy.

Coding to Standards

Secure coding standards must be adhered to, and source-code analysis tools must be used reg-
ularly to help catch various security bugs. Refer to Chapter 11, “Stage 6: Secure Coding Poli-
cies,” for secure coding ideas. The beauty of coding to standards is that you can reduce (not

238

@)

Part lll: SDL Reference Material

eliminate) the chance that new bugs, including security bugs, are entered into the system in
the first place.

Important Development and test tools for security play an important role in an Agile envi-
ronment due to the absence of specifications.

Coding the Unit Test First

The “Coding the Unit Test First” doctrine is especially true of fuzz tests; for any protocol you
parse, or for any payload you read and respond to, you should build a fuzz generator for that
protocol or payload. Refer to Chapter 12, “Stage 7: Secure Testing Policies,” for fuzz-testing
concepts. The author of this chapter (Howard) believes security can be significantly improved
if unit security testing becomes part of per-function or per-module unit before the application
is assembled.

Pair Programming

At Pairprogamming.com, the practice is described as follows:

Two programmers working side-by-side, collaborating on the same design, algorithm,
code or test. One programmer, the driver, has control of the keyboard/mouse and
actively implements the program. The other programmer, the observer, continuously
observes the work of the driver to identify tactical (syntactic, spelling, etc.) defects and
also thinks strategically about the direction of the work. On demand, the two program-
mers can brainstorm any challenging problem. Because the two programmers periodi-
cally switch roles, they work together as equals to develop software. (Pair Programming
2006)

Having a person observe while another codes is an effective way to detect security bugs as
they are entered or, better yet, to prevent them from being entered in the first place. You can
help team members develop security skills by pairing them with the security expert.

Integrating Often

Integrating programmers’ small code updates often will help you find security bugs faster
than waiting for large code changes.

Leaving Optimization Until Last

There can be a conflict between optimization and security. Optimization itself doesn’t neces-
sarily lead to security bugs, but in our experience, making large changes to the code late in the
process always leads to errors in the system. Beware.

Chapter 18: Integrating SDL with Agile Methods 239

When a Bug Is Found, a Test Is Created

In the authors’ opinion, creating a test whenever a bug is found is wise because doing so helps
prevent the bug from reentering the code base (a regression). Every time you identify a secu-
rity bug, create a test case to find and fix the bug. Then rerun the test on every subsequent ver-
sion to make sure the bug is indeed fixed.

Summary

To date, there is very little guidance for development teams wanting to augment Agile meth-
ods, such as Scrum and Extreme Programming, with security discipline. Based on our con-
versations with Agile proponents, most of the SDL best practices and requirements can be
easily incorporated into Agile practice. Doing so can only be beneficial for those using Agile
methods.

References
(Extreme Programming 2006) “Extreme Programming: A Gentle Introduction,” http;//
Www.extremeprogramming.org/ .

(Schwaber 2004) Schwaber, Ken. Agile Project Management with Scrum. Redmond, WA:
Microsoft Press, 2004.

(Microsoft 2006) “MSF for Agile Software Development,” http://msdn.microsoft.com/vstudio/
teamsystem,/msf,/msfagile/. March, 2006.

(Kothari 2004) Kothari, Nikhil. “Applying personas,” http://www.nikhilk.net/Personas.aspx.
January 2004.

(Microsoft 2005a) Visual Studio 2005 Team Server Check-in Policy. “Walkthrough: Custom-
izing Check-In Policies and Notes,” http://msdn2.microsoft.com/en-us/library/
ms181281.aspx. MSDN, 2005.

(Microsoft 2005b) Michaelis, Mark. “Introducing Microsoft Visual Studio 2005 Team System
Web Testing,” http;//msdn.microsoft.com/library/en-us/dnvs05,/html/
VS05TmSysWebTst.asp. MSDN, September 2005.

(Wikipedia 2006) “XUnit,” http;//en.wikipedia.org/wiki/XUnit.
(CppUnit 2006) “CppUnit Wiki,” http://cppunit.sourceforge.net/cppunit-wiki.
(Fowler 2005) Fowler, Martin. “Refactoring Home Page,” www.refactoring.com.

(Jeffries 2004) Jeffries, Ron. “Big Visible Charts,” http://www.xprogramming.com/xpmag/
BigVisibleCharts.htm. October 2004.

(Cohn 2004) Cohn, Mike. User Stories Applied: For Agile Software Development. Reading, MA:
Addison Wesley Professional Co., 2004.

240 Part lll: SDL Reference Material

(Garrido and Johnson 2002) Garrido, Alejandra, and Ralph Johnson. “Challenges of
Refactoring C Programs,” https.//netfiles.uiuc.edu/garrido/www,/ papers/ refactoringC.pdf.
May 2002.

(Pair Programming 2006) Williams, Laurie. “What is pair programming?” http://
wWww.pdirprogramming.com/ .

